Работа мозга как целого в структурной организации психических функций

Давно замечено, что психические явления тесно связаны с работой мозга человека. Эта мысль была сформулирована еще в первом тысячелетии до новой эры Алкмеоном Кротонским (VI в. до н. э.) и поддерживалась Гиппократом (ок. 460 – ок. 377 г. до н. э.). В течение более чем двухтысячелетней истории развития психологических знаний она оставалась неоспоримой, развиваясь и углубляясь по мере получения новых данных о работе мозга и новых результатов психологических исследований.

В начале XX века из двух разных областей знаний – физиологии и психологии – оформились две специальные науки, которые занялись изучением связей между психическими явлениями и органическими процессами, происходящими в мозге человека. Это физиология высшей нервной деятельности и психофизиология. Представители первой науки обратились к изучению тех органических процессов, происходящих в мозге, которые непосредственно касаются управления телесными реакциями и приобретения организмом нового опыта. Представители второй науки сосредоточили свое внимание в основном на исследовании анатомо-физиологических основ психики. Общим для ученых, называющих себя специалистами по высшей нервной деятельности и по психофизиологии, стало понятие научения, включающее в себя явления, связанные с памятью и в результате приобретения организмом нового опыта одновременно обнаруживающиеся на анатомо-физиологическом, психологическом и поведенческом уровнях.

Большой вклад в понимание того, как связана работа мозга и организма человека с психологическими явлениями и поведением, внес И. М. Сеченов. Позднее его идеи развил в своей теории физиологических коррелятов психических явлений И. П. Павлов, открывший явление условно-рефлекторного научения. В наши дни его идеи послужили основанием для создания новых, более современных психофизиологических теорий, объясняющих научение и поведение в целом (Н. А. Бернштейн, К. Халл, П. К. Анохин), а также механизмы условно-рефлекторного приобретения опыта (Е. Н. Соколов).

По мысли И. М. Сеченова психические явления входят как обязательный компонент в любой поведенческий акт и сами представляют собой своеобразные сложные рефлексы. Психическое, считал Сеченов, столь же объяснимо естественнонаучным путем, как и физиологическое, так как оно имеет ту же самую рефлекторную природу.

Своеобразную эволюцию со времени первого своего появления с начала XX в. до наших дней претерпели идеи И. П. Павлова, связанные с понятием условного рефлекса. Поначалу на это понятие возлагали большие надежды в объяснении психических процессов и научения. Однако эти надежды полностью не оправдались. Условный рефлекс оказался слишком простым физиологическим явлением, чтобы на его основе можно было понять и к нему свести все сложные формы поведения, тем более психические феномены, связанные с сознанием и волей.

Вскоре после открытия условно-рефлекторного научения были обнаружены и описаны иные пути приобретения живыми существами жизненного опыта – импринтинг, оперантное обусловливание, викарное научение, – которые существенно расширили и дополнили знания о механизмах научения, свойственных человеку. Но, тем не менее, идея условного рефлекса как одного из способов приобретения организмом нового опыта осталась и получила дальнейшую разработку в работах психофизиологов, в частности Е. Н. Соколова и Ч. А. Измайлова.

Наряду с этим наметились новые, более перспективные направления разработки проблемы связи психики и мозга. Они касались, с одной стороны, роли, которую психические процессы совместно с физиологическими играют в управлении поведением, а с другой – построения общих моделей регуляции поведения с участием в этом процессе физиологических и психологических явлений (Н. А. Бернштейн, К. Халл, П. К. Анохин).

 

А. Р. Лурия предложил выделить три анатомические относительно автономные блока головного мозга, обеспечивающие нормальное функционирование соответствующих групп психических явлений. Первый – блок мозговых структур, поддерживающих определенный уровень активности. Он включает неспецифические структуры разных уровней: ретикулярную формацию ствола мозга, структуры среднего мозга, глубинных его отделов, лимбической системы, медиобазальные отделы коры лобных и височных долей мозга. От работы этого блока зависит общий уровень активности и избирательная активизация отдельных подструктур, необходимая для нормального осуществления психических функций. Второй блок связан с познавательными психическими процессами, восприятием, переработкой и хранением разнообразной информации, поступающей от органов чувств: зрения, слуха, осязания и т.п. Его корковые проекции в основном располагаются в задних и височных отделах больших полушарий. Третий блок охватывает передние отделы коры головного мозга. Он связан с мышлением, программированием, высшей регуляцией поведения и психических функций, сознательным их контролем.

В целом физиологический механизм формирования ощущений, включая неосознаваемые, с учетом роли и действия ретикулярной формации, видится следующим образом. На многочисленные интеро- и экстерорецепторы ежесекундно воздействует масса разнообразных стимулов, причем лишь незначительная часть из них вызывает реакции в рецепторах. Попадая на специализированные рецепторы, они возбуждают их; рецепторы преобразуют энергию воздействующих стимулов в нервные импульсы, которые в закодированном виде несут в себе информацию о жизненно важных параметрах стимула. Далее эти импульсы попадают в центральную нервную систему и на разных ее уровнях – спинного, промежуточного, среднего и переднего мозга – многократно перерабатываются.

В кору головного мозга поступает уже переработанная, отфильтрованная и отсеянная информация, где, достигая проекционных зон коры, она порождает ощущения соответствующей модальности. С помощью ассоциативных волокон, связывающих между собой отдельные части к. г. м., эта информация, вначале представленная на уровне отдельных ощущений, интегрируется, вероятно, в образы.

Образ, складывающийся в результате восприятия как психофизиологического процесса, предполагает согласованную, координированную деятельность сразу нескольких анализаторов. В зависимости от того, какой из них работает активнее, перерабатывает больше информации, получает наиболее существенные признаки о свойствах воспринимаемого предмета, различают и виды восприятия. Соответственно выделяют зрительное, слуховое, осязательное восприятие, при которых доминирует один из следующих анализаторов: зрительный, слуховой, тактильный (кожный), мышечный.

Зрительное восприятие имеет наиболее важное значение в жизни человека, а его орган – глаз и связанные с ним отделы мозга представляется наиболее сложно устроенным из всех анализаторов. Приведем некоторые данные, касающиеся анатомо-физиологического устройства зрительной системы.

Внутренняя оболочка глазного яблока – сетчатка. В ней находятся особые световоспринимающие элементы, называемые соответственно их форме палочками и колбочками.

Центральная часть сетчатки, называемая фовеа, является ее наиболее чувствительным местом. В ней сосредоточены только колбочки (около 50000), сконцентрированные на площади размером меньше чем 1 см2. В остальной части сетчатки имеются как палочки, так и колбочки, причем от центра к периферии их концентрация постепенно уменьшается.

С головным мозгом палочки и колбочки соединены идущими от них нервами, которые имеют переключения через еще два слоя расположенных в сетчатке нервных клеток. Кроме того, через специальные горизонтальные соединительные клетки, также имеющиеся в сетчатке, ряд палочек и колбочек непосредственно соединяется друг с другом. Такая структура обеспечивает многоуровневую вертикально-горизонтальную передачу, переработку и интеграцию стимулов, воспринимаемых светочувствительными элементами: палочками и колбочками. Чем ближе к центру сетчатки, тем меньше палочек и колбочек горизонтально соединено друг с другом; чем дальше от центра, тем крупнее системы взаимно объединенных друг с другом палочек и колбочек.

Благодаря такому анатомо-физиологическому устройству, части зрительного анализатора воспринимающая система получает сразу два полезных свойства. Во-первых, соединение светочувствительных элементов друг с другом в системы, охватывающие значительные площади и пространства воспринимаемого мира, позволяет улавливать и усиливать (путем их суммирования) сравнительно небольшие воздействия света, ощущать их и обращать на них внимание. Во-вторых, большое количество светочувствительных элементов, сконцентрированных на небольшой площади ближе к центру сетчатки и имеющих отдельные независимые выходы в мозг, позволяет при необходимости лучше различать тонкие детали изображений, выделять и внимательно рассматривать их.

Интеграция зрительной информации по вертикали обеспечивается также двумя свойствами анатомо-физиологического устройства зрительного анализатора. Первое из них – наличие многих уровней переключения поступающей с периферии информации, прежде чем она попадет в кору головного мозга. Это позволяет многократно анализировать одну и ту же информацию с разных сторон, а также отбирать из нее наиболее полезные сведения, отсеивая ненужные и второстепенные.

Другое свойство связано с наличием рецептивного поля. Рецептивным полем нейрона коры головного мозга, например, называется система периферических рецепторов, воздействие на которые вызывает возбуждение одного и того же нейрона коры головного мозга (или одного и того же нейрона более высокого уровня в нервной системе).

 

Рассмотрим теперь физиологические механизмы внимания.

Как вообще состояние сосредоточенности оно связано с повышением возбудимости коры головного мозга в целом или ее отдельных участков. Это в свою очередь соотносится с активностью отдельных частей ретикулярной формации. Те ее отделы, которые своей деятельностью порождают общий эффект возбуждения, входят в структуры, связанные с ориентировочным рефлексом, автоматически возникающим при любых неожиданных и заметных изменениях стимулов, воздействующих на организм. В свою очередь те отделы ретикулярной формации, которые вызывают специфический эффект возбуждения, функционируют в рамках анатомо-физиологической системы доминанты. С ней же, скорее всего, соотносим в своем действии и избирательный механизм регуляции внимания через актуализацию потребностей, а также механизм волевого управления вниманием через кортикально-подкорковые связи.

В последние несколько десятилетий в связи с развитием генетики молекулярной физиологии, а также кибернетики привлекли к себе внимание исследования биологических основ и физиологических механизмов памяти. Часть этих исследований была проведена на нейронном уровне, т. е. на уровне изучения работы отдельных нервных клеток и их ансамблей в процессе запоминания (научения). Было показано, что следы памяти обнаруживаются в изменениях, которые в процессе научения происходят в нервных клетках отдельных внутренних структур головного мозга. Это выражается, в частности, в повышении пластичности (откликаемости на стимулы) нейронов гиппокампа, ретикулярной формации и двигательной коры в процессе научения.

Сложились гипотезы о роли глиальных элементов, молекул РНК и ДНК в процессах памяти. Некоторые ученые полагают, что глия – клетки в головном и спинном мозге, заполняющие пространства между нейронами и кровеносными сосудами, – связана с работой долговременной памяти. Предполагается также, что память соотносится с изменениями в структуре молекул рибонуклеиновой кислоты – РНК, а также с содержанием РНК в тех или иных образованиях мозга.

В коре головного мозга следы памяти или научения обнаруживаются в виде изменений в клетках центральной нервной системы, наиболее типичными из которых являются увеличение диаметра афферентных окончаний, увеличение числа и длины терминалей аксона, изменение формы клеток к. г. м., увеличение толщины волокон в клетках коры головного мозга 1 и 2 слоев.

Оцените статью