Задача по математической статистике с решением
Для решения задач:
1. для доли или для средней;
2. определение доверительной вероятности;
3. определение (оценка) предельной ошибки ∆ и доверительного интервала (х-∆; х+∆);
4. определение необходимого объема выборки n – повторная, n’ – бесповторная;
Условие задачиС целью изучения средней производительности ткачей по схеме случайной бесповторной выборки было отобрано 100 ткачей из 2000. результаты занесены в таблицу.
1) Определить вероятность того, что средняя производительность ткача на всем комбинате отличается от средней производительности в выборке не более чем на 2 метра (по модулю).
2) В условиях предыдущей задачи определить какова максимальная ошибка Δ и каков доверительный интервал для средней производительности ткача, который можно гарантировать с вероятностью Р = 0,95.
Замечание: Доверительный интервал имеет границы, которые являются случайными величинами.
Ответ: с доверительной вероятностью 0,95 можно утверждать, что интервал (80,9; 93,71) генеральную среднюю – среднюю производительность ткачей на всем комбинате.
3) Какой должен быть объем повторной и бесповторной выборок, чтобы в условиях данной задачи с доверительной вероятностью Р равной 0,95 можно было гарантировать ошибку Δ = 1,81 для средней производительности ткачей.
Ответ: нужно обследовать 105 ткачей для повторной выборки (100 для бесповторной) чтобы с вероятностью Р = 0,95 гарантировать наибольшее отклонение Δ = 1,81 для средней производительности ткачей.
4) В условиях исходной задачи определить вероятность того, что доля ткачей, у которых производительность не более 75 метров на всем комбинате отличается от доли таких ткачей в выборке по модулю не более чем на 0,05.
Ответ: с вероятность 0,778 можно утверждать, что доля ткачей, у которых производительность не более 75 метров на всем комбинате отличается от доли таких ткачей в выборке по модулю не более чем на 0,05.
5) В условиях задачи найти Δ и доверительный интервал для доли ткачей на всем комбинате, чья производительность не более 75 метров, который можно гарантировать с вероятностью Р=0,778
Замечание: Доверительный интервал имеет границы, которые являются случайными величинами.
Ответ: с вероятностью 0,778 можно утверждать , что доверительный интервал (0,18; 0,28) содержит генеральную долю ткачей, чья производительность не более 75 метров.
6) В условиях первоначальной задачи определить, сколько надо обследовать ткачей в случае повторной и бесповторной выборки, чтобы с вероятностью Р = 0,778 можно было гарантировать наибольшее отклонение Δ равное 0,05 для доли ткачей, чья производительность не более 75 метров. Ответ дать для случая:
а) когда есть предварительная выборка;
б) когда никаких предварительных данных нет;
Ответ: нужно обследовать 105 ткачей для повторной выборки (100 для бесповторной) чтобы с вероятностью Р = 0,778 гарантировать Δ = 0,05 для доли ткачей, чья производительность не более 75 метров.
б) никаких предварительных данных нет (т.е. нет исходной таблицы)