Решение типовой задачи оптимизации графическим методом

Решить графическим методом типовую задачу оптимизации
Продукция двух видов (краска для внутренних (I) и наружных (E) работ) поступает в оптовую продажу. Для производства красок используется два исходных продукта – А и В. Максимально возможные суточные запасы этих продуктов составляют 6 8 тонн соответственно. Расходы продуктов А и В на 1 т соответствующих красок приведены в таблице.
Исходный продукт Расход исходных продуктов на тонну краски, т Максимально возможный запас, т
Краска Е Краска I
А 1 2 6
В 2 1 8
Изучение рынка сбыта показало, что суточный спрос на краску I никогда не превышает спроса на краску Е более чем на 1т. Кроме того, установлено, что спрос на краску I не превышает 2 т в сутки. Оптовые цены одной тонны красок равны 3000 ден.ед. для краски Е и 2000 ден.ед. для краски I. Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации продукции был максимальным?
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на минимум, и почему?
Решение
Введем следующие переменные:
Х1 – количество краски Е (т);
Х2 – количество краски I (т).
Цена краски Е составляет 3000 (ден. ед.), а цена краски I –2000 (ден. ед.). Необходимо максимизировать целевую функцию:

Введены следующие ограничения:
Х1+2Х2≤6;
2Х1+Х2≤8;
Х2≤2;
Х2-Х1≤1.
Первое ограничение по продукту А Х1+2Х2≤6. Прямая Х1+2Х2=6 проходит через точки (0;3) и (6;0).
Второе ограничение по продукту В 2Х1+Х2≤8. Прямая 2Х1+Х2=8 проходит через точки (0;8) и (4;0).
Третье ограничение Х2≤2. Прямая L: Х2=2 проходит параллельно оси Х1 через точку Х2=2.
Четвертое ограничение Х2-Х1≤1. Прямая С: Х2-Х1=1 проходит через точки (0;1) и (-1;0).
Построим вектор целевой функции (градиент, вектор нормали). Координаты конца вектора определяются коэффициентами функции цели, при этом начало вектора находится в точке (0,0): с = (3000,2000). Для удобства можно строить вектор, пропорциональный найденному вектору с = (3,2).

Построим линию уровня целевой функции. Для этого приравняем целевую функцию к постоянной величине α: 3000Х1 + 2000Х2 = α. Пусть для удобства α = 0, тогда уравнение линии нулевого уровня L0: 3Х1 + 2Х2 = 0 и она проходит через точку (0,0) и (-2,3). Если построение выполнено правильно, то линии уровня целевой функции и градиент перпендикулярны.

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью допустимых решений.

Решением неравенств будет являться полуплоскость, лежащая ниже пересекающихся прямых Х1+2Х2=6, 2Х1+Х2=8, Х2=2, Х2-Х1=1. 
При максимизации функции линия уровня перемещается по направлению вектору – градиенту.
Определим оптимальное решение задачи.
Для решения задачи на максимум переместим линию нулевого уровня L0 параллельно самой себе в направлении вектора с до точки выхода из допустимой области, таким образом, найдем разрешающую точку Д.
Найдем координаты точки Д, которая является пересечение прямых А и В. Решим систему уравнений этих прямых:
Х1+2Х2=6
2Х1+Х2=8
Находим, что Х1=3,33, Х2 = 1,33
(ден. ед.)
Ответ:
Прибыль фирмы будет максимальной, т.е. 12650 ден. ед., если ежедневно будет производиться 3,33 т краски Е и 1,33 т краски I.
При решении задачи на минимум – решений не будет.

Оцените статью