Непрерывные случайные величины.
Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной.
В частных случаях это может быть не один промежуток, а объединение нескольких промежутков. Промежутки могут быть конечными, полу-бесконечными или бесконечными, например: (a; b], (– ; a), [b;), (–; ).
Вообще непрерывная случайная величина – это абстракция. Снаряд, выпущенный из пушки, может пролететь любое расстояние, скажем, от 5 до 5,3 километров, но никому не придёт в голову измерять эту величину с точностью до 0,0000001 километра (то есть до миллиметра), не говоря уже об абсолютной точности. В практике такое расстояние будет дискретной случайной величиной, у которой одно значение от другого отличается по крайней мере на 1 метр.
При описании непрерывной случайной величины принципиально невозможно выписать и занумеровать все её значения, принадлежащие даже достаточно узкому интервалу. Эти значения образуют несчётное множество, называемое «континуум».
Если – непрерывная случайная величина, то равенство = х представляет собой, как и в случае дискретной случайной величины, некоторое случайное событие, но для непрерывной случайной величины это событие можно связать лишь с вероятностью, равной нулю, что однако не влечёт за собой невозможности события. Так, например, можно говорить, что только с вероятностью «нуль» снаряд пролетит 5245,7183 метра, или что отклонение действительного размера детали от номинального составит 0,001059 миллиметра. В этих случаях практически невозможно установить, произошло событие или нет, так как измерения величин проводятся с ограниченной точностью, и в качестве результата измерения можно фактически указать лишь границы более или менее узкого интервала, внутри которого находится измеренное значение.
Вероятность, отличная от нуля, может быть связана только с попаданием величины в заданный, хотя бы и весьма узкий, интервал. Здесь можно привести сравнение с распределением массы вдоль стержня. Отсутствует масса, сосредоточенная, скажем, в сечении, расположенном на расстоянии 20 см от левого конца стержня, имеет смысл говорить лишь о массе, заключённой между сечениями, проходящими через концы некоторого промежутка.
Пусть – непрерывная случайная величина. Рассмотрим для некоторого числа х вероятность неравенства х < < х + х
P(х < < х + х).
Здесь х – величина малого интервала.
Очевидно, что если х 0, то P(х < < х + х) 0. Обозначим р(х) предел отношения P(х < < х + х) к х при х 0, если такой предел существует:
(1)
Функция р(х) называется плотностью распределения случайной величины. Из формулы (1) следует равенство, справедливое для малых величин х, которое также можно считать определением функции р(х):
P(х < < х + х) p(x)х (2)
Очевидно, что p(x) – неотрицательная функция. Для определения вероятности того, что случайная величина примет значение из промежутка [a, b] конечной длины, нужно выбрать на промежутке произвольные числа x1, х2,, хn удовлетворяющие условию а=х0